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COMMENT 

The high-temperature susceptibility of the classical 
Heisenberg model in four dimensions 
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f Wheatstone Physics Laboratory, King's College, University of London. Strand WC2R 
2LS, UK 
i: Theoretical Physics Institute, Department of Physics, St Francis Xavier University, 
Antigonish, Nova Scotia, Canada 

Received 25 May 1982 

Abstract. The high-temperature susceptibility of the four-dimensional classical Heisenberg 
model is studied by the method of series expansions. High-temperature series are presen- 
ted to order K 9  for the hyper face centred (HFCC) lattice, to order K" for the hyper 
body centred cubic ( H B C ~ )  lattice and to order K'' for the hyper simple cubic (HSC) 
lattice. The last three coefficients for the HSC lattice and all the coefficients for the other 
two lattices are new. The series are analysed for singularities of the form t-'IIn tip, 
predicted by the renormalisation group theory ( r  = 1 - K J K ,  where K is the high- 
temperature expansion variable J / k T ) .  Fairly good convergence is obtained for p = 0.45 
for all three lattices, in agreement with renormalisation group calculations. 

In a previous paper (McKenzie et a1 1982, hereafter referred to as I), we investigated 
the high-temperature susceptibility of the classical Heisenberg model in three 
dimensions. The star graph expansion method was used to derive extended series 
expansions on several three-dimensional lattices. In this paper, we extend the calcula- 
tions to four-dimensional lattices and derive series expansions for the HFCC, HBCC 
and HSC lattices. The series are analysed by various extrapolation methods and the 
results are presented. 

As discussed in I, the star graph expansion for the susceptibility takes the form 

where 9 denotes the lattice; the sum is over all star graphs S which can be embedded 
on 9, with weak lattice constant ( S ;  2'). The h , ( w )  represent the weights or contribu- 
tions of the star graphs S to the reciprocal susceptibility expansion and are functions 
of the variable w given by 

w ( K )  = 13,2tKl/11/2(K). ( 2 )  
The 1!(K)  denote modified Bessel functions of the first kind, and K is the usual 
high-temperature variable J / k T .  The calculation of h , (w)  as power series in w (and 
hence of K )  is discussed in I. The weights h , ( w )  depend only on the star graph S and 

9: Present address: Department of Chemistry, Royal Holloway College, University of London, Egham Hill, 
Surrey TW20 OEX, U K ,  
11 Present address: Department of Physics, Bar-ilan University, Ramat-Gan, Israel. 
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not on the lattice 2. Thus the same set of h , ( w )  can be used, together with the 
appropriate ( S ;  Z), to obtain susceptibility series for any lattice. We have done this 
for the four-dimensional analogues HFCC, HBCC and HSC of the corresponding three- 
dimensional lattices, FCC, BCC and sc. The lattice constants were obtained using 
standard methods (see for instance, Martin 1974), together with some special tech- 
niques for the low index graphs (Sykes et a1 1972). Use of (1) then yields the following 
series for 3x0: 

HFCC: 1 + 8 K  +61.333K2+460.8K3+3427.081 4814K4+25 336.586 596K5 

+ 186 584.132 06K6+ 1370 266.8804K7+ 10 042 618.427K8 

+73 485 823.889K9+. . . 
HBCC: 1 +5.33K +26.666K2+132.977K3+653.234 567 90K4 

+3205.301 3521K5+ 15 633.457 965K6+76 205.145 397K7 (3) 

1.370 296.145 78K8+ 1798 686.4767K9+8720 393.2376K" 

1 4 2  267 736.713K" + . . . 
HSC: 1 + 2.666K +6.222K2 + . . . + 405 1.065 4878K lo  

+ 8998.094 1908'lf 19 957.360 710K l 2  + . . . . 
The series coefficients for the HSC lattice are in agreement with Stanley (1974) to 

order K9. The last three coefficients for this lattice are new and so are all the coefficients 
for the HBCC and HFCC lattices. Various checking procedures used to ensure the 
correctness of the lattice constants and weights are described in I and they have been 
incorporated in these calculations as well. 

The four-dimensional (d = 4) classical Heisenberg model has not been studied as 
extensively as its three-dimensional counterpart. Stanley (1974) investigates the more 
general classical n-vector: model on the d-dimensional hypercubical lattices and 
concludes that the critical properties are monotonic functions of the spin dimensionality 
n. Thus the properties of the classical Heisenberg model ( n  = 3) are bounded between 
those of the Ising model ( n  = 1) and those of the spherical model (n  = 00). On the 
basis of exact solutions (n  =CO,  all d and d = 1, all n ) ,  as well as available series 
expansions on the hypercubical lattices, Stanley conjectured that the susceptibility 
exponent ( y )  assumes the mean field value of 1 for all n if d a 4 .  

This conjecture finds support in renormalisation group (RG) calculations (BrCzin 
et a1 1976, for instance) which predict the existence of a logarithmic correction term 
modifying the simple power law singularity. Thus, the asymptotic behaviour of x3 for 
d = 4 (all n )  is given by 

xo-AtCYlln tiP (Y = I), (4) 
where t = 1 - K/K,. p is the exponent of the logarithmic correction term and depends 
on the value of n. For n = 3 (the classical Heisenberg model), p = 5. 

To analyse the series (3) for the asymptotic form (4), we use a method due to 
Guttmann (1978) which has been extensively applied to the d = 4 Ising model 
(McKenzie 1979, McKenzie et  a1 1979, Gaunt et a1 1979, McKenzie and Gaunt 

t Stanley used the letter D to represent spin dimension but in recent years the letter n (following Wilson) 
has received wider acceptance. 
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1980). The method consists in comparing the coefficients an of the susceptibility series 
(3) with those of the mimic function f ( K )  defined by 

( 5  1 f ( K )  =K-"(l --K)-'I ln[ l / ( l  -K. ) ] lP*  =c b,K". 

We form the ratios 

R n  = (an/an-1)/(bnlbn-l), (6) 

which should approach K,' with zero slope as n + o;, for p *  = p .  
A slightly modified procedure is necessary for the loose packed lattices to eliminate 

interference from the antiferromagnetic singularity (Guttmann 1978). We first trans- 
form (3) to a new variable x given by 

x = 2 K / ( 1 +  K/K,),  (7) 

and use the coefficients of the transformed series in place of the an in (6). A preliminary 
estimate of K ,  is required for the transformation (7) and this is obtained by forming 
Pad6 approximants to the logarithmic derivative of the series (3). 

In tables 1-3 we present sequences of Pad6 approximants for the critical point 
(K,) and the exponent ( y )  for the three lattices. We include the HFCC for completeness, 
though the transformation (7) is, strictly speaking, not necessary in this case. On the 
basis of these sequences, we make the following estimates for the critical points K,: 

0.456 15 i 0.0002 (HSC), 

K ,  = 0.2083 f 0.0003 (HBCC), 

( HFCC) . i 0.138 38k0.000 05 

The estimates for y are higher than the mean field value of 1, but that may be due 
either to slow convergence of the series or to the fact that the logarithmic correction 
term has not been included in the analysis. 

We now analyse for the logarithmic exponent p using the procedure outlined 
above. We compute the sequences Rn defined in (6), using the transformation (7), 
with K ,  given by (8). For the correct choice of p*, the Rn should tend to x i '  for 

Table 1. HSC lattice. Estimates for K ,  and y from Pad6 approximants to the logarithmic 
derivative of the susceptibility series. 

DIN 3 4 5 6 7 8 

0.456 21 0.455 94 0.455 92 0.455 70 0.455 85 0.455 49 
(1.137) (1.134) 11.134) (1.129) (1.132) (1.124) 

0.455 93 0.455 80 0.456 18 0.456 16 0.458 12 
(1.134) (1.131) (1.135) (1.135) (1.058) 

0.455 84 0.456 12 0.456 16 0.456 18 
(1.132) (1.135) (1.135) (1.135) 

0.456 27 0.456 16 0.456 12 
(1.135) (1.135) (1.135) 

0.456 16 0.456 25 
(1.135) (1.135) 

0.457 36 
(1.104) 
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Table 2. HBCC lattice. Estimates for K ,  and y from Pade approximants to the logarithmic 
derivative of the susceptibility series. 

DIN 3 4 5 6 7 

0.208 37 0.208 35 0.208 35 0.208 27 0.208 29 
3 (1  105) (1.104) (1.104) (1.101) (1.102) 

0.208 35 0.208 38 0.209 74- 0.208 04 
(1.104) i 1.105) 10.9004) (1.081) 

0.208 39 0.208 08 0.208 08 
(1.105) (1.085) (1.086) 

0.207 127 0.208 08 
(0.881) i 1.086) 

0.208 06 
(1.083) 

4 

5 

6 

7 
~ 

i Defective approximants. 

Table 3. HFCC lattice. Estimates for K ,  and y from Pade approximants to the logarithmic 
derivative of the susceptibility series. 

NI D 2 3 4 5 6 

0.140 12 
(1.074) 

0.138 42 
(1.115) 

0.138 39 
(1.113) 

0.138 38 
(1.113) 

2 

3 

4 

5 

0.138 38 
(1.113) 6 

0.138 41 0.138 38 0.138 39 0.138 33 
(1.1 14) (1.113) (1.113) (1.108) 

0.138 38 0.138 38 0.138 38 
(1.113) (1.113) (1.113) 

0.138 38 0.138 38 
(1.1 13) (1.113) 

0.138 39 
(1.113) 

n + m. To allow for higher-order correction terms, linear and quadratic extrapolants 
of R,  are calculated. Simultaneously, the 'exponent' estimates n (Rnxc - 1) and their 
linear extrapolants must approach zero as n + W .  The sequences €or R ,  and their 
linear and quadratic extrapolants together with sequences for the exponent and linear 
extrapolants are presented in tables 4-6 for the three lattices. 

In all three cases, the R, and their extrapolants tend to a value of K,' reasonably 
consistent with the Pade estimates (8). However, the convergence is not sufficiently 
rapid for us to decide on the best choice of p *  from these sequences alone. A better 
criterion, which also has the advantage of not being biased by the initial choice of 
K i ' ,  is that of requiring that the sequence of 'exponents' and that of their linear 
extrapolants must vanish for the correct choice of p * .  We find that for the HSC lattice, 
the exponents are all positive for p *  = 0.4, becoming extremely small and negative 
for p *  = 0.4545 and increasing in magnitude (while still negative) for p *  = 0.5. This 
suggests that they will tend to zero for some value of p *  close to, possibly a little less 
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Table 4. HSC lattice. Analysis for the logarithmic exponent. 

Linear Quadratic Linear 
P *  n R ,  extrapolants extrapolants Exponent extrapolants 

0.4 7 
8 
9 

10 
11 
12 

0.454545 7 
8 
9 

10 
11 
12 

7 
8 
9 

10 
11 
12 

0.5 

2.1885 
2.1908 
2.1923 
2.1934 
2.1941 
2.1946 

2.1829 
2.1861 
2.1882 
2.1897 
2.1908 
2.1917 

2.1782 
2.1821 
2.1847 
2.1867 
2.1881 
2.1892 

2.2105 
2.2069 
2.2044 
2.2026 
2.2013 
2.2002 

2.2117 
2.2080 
2.2054 
2.2034 
2.2020 
2.2009 

2.2127 
2.2089 
2.2061 
2.2041 
2.2026 
2.2014 

2.1973 
2.1963 
2.1957 
2.1953 
2.1951 
2.1950 

2.1981 
2.1969 
2.1962 
2.1957 
2.1954 
2.1953 

2.1987 
2.1974 
2.1966 
2.1961 
2.1957 
2.1955 

-0.0121 
-0.0055 
+0.0001 

0.0048 
0.0089 
0.0125 

-0.0300 
-0.0228 
-0.0168 
-0.0117 
-0.0073 
-0.0034 

-0.0449 
-0.0374 
-0.0310 
-0.0256 
-0.0209 
-0.0168 

0.0377 
0.0413 
0.0441 
0.0472 
0.0497 
0.0522 

0.0231 
0.0273 
0.0309 
0.0340 
0.0369 
0.0396 

0.0109 
0.0156 
0.0195 
0.0239 
0.0261 
0.0290 

Table 5. HBCC lattice. Analysis for the logarithmic exponent. 

Linear Quadratic Linear 
P *  n Rn extrapolants extrapolants Exponent extrapolants 

0.4 6 
7 
8 
9 

10 
11 

0.454545 6 
7 
8 
9 

10 
11 

6 
7 
8 
9 

10 
11 

0.5 

4.7608 
4.7716 
4.7789 
4.7839 
4.7875 
4.7903 

4.7461 
4.7594 
4.7685 
4.7749 
4.7796 
4.7832 

4.7339 
4.7492 
4.7598 
4.7673 
4.7730 
4.7773 

4.8476 
4.8368 
4.8294 
4.8242 
4.8204 
4.8175 

4.8505 
4.8394 
4.8317 
4.8262 
4.8222 
4.8191 

4.8529 
4.8415 
4.8335 
4.8278 
4.8236 
4.8204 

4.8143 
4.8098 
4.8073 
4.8059 
4.8052 
4.8047 

4.8165 
4.8114 
4.8086 
4.8070 
4.8060 
4.8054 

4.8185 
4.8129 
4.8098 
4.8079 
4.8068 
4.8061 

-0.0490 
-0.0414 
-0.0352 
-0.0302 
-0.0260 
-0.0223 

-0.0673 
-0.0591 
-0.0525 
-0.0471 
-0.0425 
-0.0385 

-0.0827 
-0.0740 
-0.0670 
-0.0612 
-0.0563 
-0.0520 

0.0005 
0.0046 
0.0076 
0.0101 
0.0123 
0.0142 

-0.0147 
-0.0099 
-0.0063 
-0.0034 
-0.0009 
+0.0014 

-0.0276 
-0.0222 
-0,0181 
-0.0148 
-0.0120 
-0.0094 

than, the predicted value of A. For the other two lattices, the sequences of linear 
extrapolants of the exponents behave in the same way. Thus, p *  = seems to be a 
reasonable choice for all three lattices, given the shortness of the series and the 
uncertainties in the extrapolation procedure. 
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Table 6.  KFCC lattice. Analysis for the logarithmic exponent 

Linear Quadratic Linear 
B* n R" extrapolants extrapolants Exponent extrapolants 

0.4 5 
6 
7 
8 
9 

0.454545 5 
6 
7 
8 
9 

0.5 5 
6 
7 
8 
9 

7.1940 
7.2052 
7.2124 
7.2174 
7.2209 

7.1664 
7.1830 
7.1940 
7.2017 
7.2073 

7.1434 
7.1645 
7.1786 
7.1886 
7.1959 

7.2687 
7.2613 
7.2560 
7.2519 
7.2489 

7.2743 
7.2661 
7,2601 
7.2555 
7.2520 

7.2786 
7.2699 
7.2634 
7.2584 
7.2545 

7.2523 
7.2465 
7.2428 
7,2397 
7.2383 

7.2568 
7 2496 
7.2452 
7.2416 
7.2398 

7.2606 
7.2524 
7.2473 
7.2432 
7.2411 

-0.0225 
-0.0177 
-0.0136 
-0.0101 
-0.0070 

-0.0416 
-0.0361 
-0.0315 
-0.0274 
-0.0239 

-0.0575 
-0.05 15 
-0.0464 
-0.0420 
-0.0331 

-0.0009 
-0.0064 
-0.0109 
-0.0145 
-0.0178 

-0.0151 
-0.0087 
-0.0036 
+0.0006 

0.0043 

-0.0286 
-0.0215 
-0.0157 
-0.0111 
-0.0071 

We conclude therefore that the high-temperature susceptibility of the four- 
dimensional classical Heisenberg model behaves consistently with RG predictions. 
The exponent of the logarithmic correction term is close to the predicted value of A. 
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